diff --git a/CommAlg/krull.lean b/CommAlg/krull.lean index e24aa0f..78c9a9b 100644 --- a/CommAlg/krull.lean +++ b/CommAlg/krull.lean @@ -127,9 +127,19 @@ lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) : #check ENat.recTopCoe -/- terrible place for this lemma. Also this probably exists somewhere +/- terrible place for these two lemmas. Also this probably exists somewhere Also this is a terrible proof -/ +lemma eq_top_iff' (n : ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by + refine' ⟨fun a b => _, fun h => _⟩ + . rw [a]; exact le_top + . induction' n using ENat.recTopCoe with n + . rfl + . exfalso + apply not_lt_of_ge (h (n + 1)) + norm_cast + norm_num + lemma eq_top_iff (n : WithBot ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by aesop induction' n using WithBot.recBotCoe with n @@ -147,47 +157,30 @@ lemma eq_top_iff (n : WithBot ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by lemma krullDim_eq_top_iff (R : Type _) [CommRing R] : krullDim R = ⊤ ↔ ∀ (n : ℕ), ∃ I : PrimeSpectrum R, n ≤ height I := by - simp [eq_top_iff, le_krullDim_iff] + simp_rw [eq_top_iff, le_krullDim_iff] change (∀ (m : ℕ), ∃ I, ((m : ℕ∞) : WithBot ℕ∞) ≤ height I) ↔ _ simp [WithBot.coe_le_coe] - /-- The Krull dimension of a local ring is the height of its maximal ideal. -/ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by apply le_antisymm . rw [krullDim_le_iff'] intro I - apply WithBot.coe_mono - apply height_le_of_le - apply le_maximalIdeal - exact I.2.1 + exact WithBot.coe_mono <| height_le_of_le <| le_maximalIdeal I.2.1 . simp only [height_le_krullDim] /-- The height of a prime `𝔭` is greater than `n` if and only if there is a chain of primes less than `𝔭` with length `n + 1`. -/ lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} : n < height 𝔭 ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by - match n with - | ⊤ => - constructor <;> intro h <;> exfalso - . exact (not_le.mpr h) le_top - . tauto - | (n : ℕ) => - have (m : ℕ∞) : n < m ↔ (n + 1 : ℕ∞) ≤ m := by - symm - show (n + 1 ≤ m ↔ _ ) - apply ENat.add_one_le_iff - exact ENat.coe_ne_top _ - rw [this] - unfold Ideal.height + induction' n using ENat.recTopCoe with n + . simp + . rw [←(ENat.add_one_le_iff <| ENat.coe_ne_top _)] show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞)) - rw [{J | J < 𝔭}.le_chainHeight_iff] + rw [Ideal.height, Set.le_chainHeight_iff] show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _ - constructor <;> rintro ⟨c, hc⟩ <;> use c - . tauto - . change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc - norm_cast at hc - tauto + norm_cast + simp_rw [and_assoc] /-- Form of `lt_height_iff''` for rewriting with the height coerced to `WithBot ℕ∞`. -/ lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} : @@ -199,30 +192,24 @@ lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} : --some propositions that would be nice to be able to eventually /-- The prime spectrum of the zero ring is empty. -/ -lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False := - x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem +lemma primeSpectrum_empty_of_subsingleton [Subsingleton R] : IsEmpty <| PrimeSpectrum R where + false x := x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem /-- A CommRing has empty prime spectrum if and only if it is the zero ring. -/ lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by - constructor - . contrapose - rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not] + constructor <;> contrapose + . rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not] apply PrimeSpectrum.instNonemptyPrimeSpectrum - . intro h - by_contra hneg - rw [not_isEmpty_iff] at hneg - rcases hneg with ⟨a, ha⟩ - exact primeSpectrum_empty_of_subsingleton ⟨a, ha⟩ + . intro hneg h + exact hneg primeSpectrum_empty_of_subsingleton /-- A ring has Krull dimension -∞ if and only if it is the zero ring -/ lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by - unfold Ideal.krullDim - rw [←primeSpectrum_empty_iff, iSup_eq_bot] + rw [Ideal.krullDim, ←primeSpectrum_empty_iff, iSup_eq_bot] constructor <;> intro h . rw [←not_nonempty_iff] rintro ⟨a, ha⟩ - specialize h ⟨a, ha⟩ - tauto + cases h ⟨a, ha⟩ . rw [h.forall_iff] trivial @@ -290,13 +277,10 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum /-- In a field, the unique prime ideal is the zero ideal. -/ @[simp] lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P = ⊥ := by - constructor - · intro primeP - obtain T := eq_bot_or_top P - have : ¬P = ⊤ := IsPrime.ne_top primeP - tauto - · intro botP - rw [botP] + refine' ⟨fun primeP => Or.elim (eq_bot_or_top P) _ _, fun botP => _⟩ + · intro P_top; exact P_top + . intro P_bot; exact False.elim (primeP.ne_top P_bot) + · rw [botP] exact bot_prime /-- In a field, all primes have height 0. -/