diff --git a/README.md b/README.md index 9fe7965..8ffbe34 100644 --- a/README.md +++ b/README.md @@ -6,26 +6,49 @@ We start the commutative algebra project with a list of important definitions an Feel free to add, modify, and expand this file. Below are starting points for the project: -Definitions of an ideal, prime ideal, and maximal ideal +- Definitions of an ideal, prime ideal, and maximal ideal: +```lean +def Mathlib.RingTheory.Ideal.Basic.Ideal (R : Type u) [Semiring R] := Submodule R R +class Mathlib.RingTheory.Ideal.Basic.IsPrime (I : Ideal α) : Prop +class IsMaximal (I : Ideal α) : Prop +``` -Definition of a Spec of a ring +- Definition of a Spec of a ring: `Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic.PrimeSpectrum` -Definition of a Noetherian and Artinian rings +- Definition of a Noetherian and Artinian rings: +```lean +class Mathlib.RingTheory.Noetherian.IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop +class Mathlib.RingTheory.Artinian.IsArtinian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop +``` +- Definition of a polynomial ring: `Mathlib.RingTheory.Polynomial.Basic` -Definitions of a local ring and quotient ring +- Definitions of a local ring and quotient ring: `Mathlib.RingTheory.Ideal.Quotient.?` +```lean +class Mathlib.RingTheory.Ideal.LocalRing.LocalRing (R : Type u) [Semiring R] extends Nontrivial R : Prop +``` -Definition of the chain of prime ideals and the length of these chains +- Definition of the chain of prime ideals and the length of these chains -Definition of the Krull dimension (supremum of the lengh of chain of prime ideal) +- Definition of the Krull dimension (supremum of the lengh of chain of prime ideal): `Mathlib.Order.KrullDimension.krullDim` + +- Krull dimension of a module + +- Definition of the height of prime ideal (dimension of A_p): `Mathlib.Order.KrullDimension.height` -Definition of the height of prime ideal (dimension of A_p) Give Examples of each of the above cases for a particular instances of ring -Theorem 0: Hilbert Basis Theorem +Theorem 0: Hilbert Basis Theorem: +```lean +theorem Mathlib.RingTheory.Polynomial.Basic.Polynomial.isNoetherianRing [inst : IsNoetherianRing R] : IsNoetherianRing R[X] +``` Theorem 1: If A is a nonzero ring, then dim A[t] >= dim A +1 Theorem 2: If A is a nonzero noetherian ring, then dim A[t] = dim A + 1 Theorem 3: If A is nonzero ring then dim A_p + dim A/p <= dim A + +Lemma 0: A ring is artinian iff it is noetherian of dimension 0. + +Definition of a graded module