diff --git a/CommAlg/monalisa.lean b/CommAlg/monalisa.lean index f3d174b..7a8635e 100644 --- a/CommAlg/monalisa.lean +++ b/CommAlg/monalisa.lean @@ -4,6 +4,18 @@ import Mathlib.Algebra.Module.GradedModule import Mathlib.RingTheory.Ideal.AssociatedPrime import Mathlib.RingTheory.Artinian import Mathlib.Order.Height +import Mathlib.Algebra.Algebra.Subalgebra.Basic +import Mathlib.Algebra.Module.LinearMap + +instance {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : + Algebra (𝒜 0) (⨁ i, 𝒜 i) := + Algebra.ofModule' + (by + intro r x + sorry) + (by + intro r x + sorry) noncomputable def length ( A : Type _) (M : Type _) [CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤} @@ -96,13 +108,28 @@ lemma Associated_prime_of_graded_is_graded sorry --- def standard_graded {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (n : ℕ) : --- Prop := +class StandardGraded {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where + gen_in_first_piece : + Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i)) def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ℤ) : AddSubgroup (𝒜 i) := sorry +def graded_morphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _) +[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)] +[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) : ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) ∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by sorry + + +def graded_submodule +(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type u) (𝓝 : ℤ → Type u) +[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)] +[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] +(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i)) (i : ℤ ) + : ∃(piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i := by + sorry + + -- @ Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component instance Quotient_of_graded_is_graded @@ -111,12 +138,13 @@ instance Quotient_of_graded_is_graded : DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by sorry -instance graded_submodule -(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _) -[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)] -[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] -(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i)) - : (𝓝 i : Submodule (𝒜 0) (𝓜 i)) := by +theorem quotient_hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] +[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (p : Ideal (⨁ i, 𝒜 i)) +(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, ((𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) = d) (hilb : ℤ → ℤ) + (Hhilb: hilbert_function 𝒜 𝓜 hilb) (homprime: HomogeneousPrime 𝒜 p) +: PolyType hilb (d - 1) := by sorry +