diff --git a/.docker/test.lean b/.docker/test.lean
new file mode 100644
index 0000000..d3a272e
--- /dev/null
+++ b/.docker/test.lean
@@ -0,0 +1,140 @@
+import Mathlib.Order.KrullDimension
+import Mathlib.Order.JordanHolder
+import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
+import Mathlib.Order.Height
+import Mathlib.RingTheory.Ideal.Basic
+import Mathlib.RingTheory.Ideal.Operations
+import Mathlib.LinearAlgebra.Finsupp
+import Mathlib.RingTheory.GradedAlgebra.Basic
+import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
+import Mathlib.Algebra.Module.GradedModule
+import Mathlib.RingTheory.Ideal.AssociatedPrime
+import Mathlib.RingTheory.Noetherian
+import Mathlib.RingTheory.Artinian
+import Mathlib.Algebra.Module.GradedModule
+import Mathlib.RingTheory.Noetherian
+import Mathlib.RingTheory.Finiteness
+import Mathlib.RingTheory.Ideal.Operations
+import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
+import Mathlib.RingTheory.FiniteType
+import Mathlib.Order.Height
+import Mathlib.RingTheory.PrincipalIdealDomain
+import Mathlib.RingTheory.DedekindDomain.Basic
+import Mathlib.RingTheory.Ideal.Quotient
+import Mathlib.RingTheory.Localization.AtPrime
+import Mathlib.Order.ConditionallyCompleteLattice.Basic
+import Mathlib.Algebra.DirectSum.Ring
+import Mathlib.RingTheory.Ideal.LocalRing
+import Mathlib
+import Mathlib.Algebra.MonoidAlgebra.Basic
+import Mathlib.Data.Finset.Sort
+import Mathlib.Order.Height
+import Mathlib.Order.KrullDimension
+import Mathlib.Order.JordanHolder
+import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
+import Mathlib.Order.Height
+import Mathlib.RingTheory.Ideal.Basic
+import Mathlib.RingTheory.Ideal.Operations
+import Mathlib.LinearAlgebra.Finsupp
+import Mathlib.RingTheory.GradedAlgebra.Basic
+import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
+import Mathlib.Algebra.Module.GradedModule
+import Mathlib.RingTheory.Ideal.AssociatedPrime
+import Mathlib.RingTheory.Noetherian
+import Mathlib.RingTheory.Artinian
+import Mathlib.Algebra.Module.GradedModule
+import Mathlib.RingTheory.Noetherian
+import Mathlib.RingTheory.Finiteness
+import Mathlib.RingTheory.Ideal.Operations
+
+
+
+
+noncomputable def length ( A : Type _) (M : Type _)
+ [CommRing A] [AddCommGroup M] [Module A M] :=  Set.chainHeight {M' : Submodule A M | M' < ⊤}
+
+
+def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I)
+
+
+def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I)
+
+--theorem monotone_stabilizes_iff_noetherian :
+-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
+-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
+
+open GradedMonoid.GSmul
+
+open DirectSum
+
+instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]  [DirectSum.GCommRing 𝒜]
+  [DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
+    where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
+
+lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]  [DirectSum.GCommRing 𝒜]
+  [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
+  of _ _ (a • m) = of _ _ a • of _ _ m := by
+  refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
+  refine' of_eq_of_gradedMonoid_eq _
+  exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
+
+instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]  [DirectSum.GCommRing 𝒜]
+  [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
+  letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
+  exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
+
+instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]  [DirectSum.GCommRing 𝒜]
+  [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
+  letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
+  exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
+
+  -- (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
+
+noncomputable def dummyhil_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
+  [DirectSum.GCommRing 𝒜]
+  [DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℕ∞) := ∀ i, hilb i = (length (𝒜 0) (𝓜 i))
+
+
+lemma hilbertz (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
+  [DirectSum.GCommRing 𝒜]
+  [DirectSum.Gmodule 𝒜 𝓜] 
+  (finlen : ∀ i, (length (𝒜 0) (𝓜 i)) < ⊤ ) : ℤ → ℤ := by
+  intro i
+  let h := dummyhil_function 𝒜 𝓜
+  simp  at h 
+  let n : ℤ → ℕ := fun i ↦ WithTop.untop _ (finlen i).ne
+  have hn : ∀ i, (n i : ℕ∞) = length (𝒜 0) (𝓜 i) := fun i ↦ WithTop.coe_untop _ _
+  have' := hn i
+  exact ((n i) : ℤ )
+
+
+noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
+  [DirectSum.GCommRing 𝒜]
+  [DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
+
+
+
+noncomputable def dimensionring { A: Type _}
+ [CommRing A] := krullDim (PrimeSpectrum A)
+
+
+noncomputable def dimensionmodule ( A : Type _) (M : Type _)
+ [CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
+
+--  lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
+--   [DirectSum.GCommRing 𝒜]
+--   [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
+
+
+def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
+
+
+
+theorem hilbert_polynomial (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
+[DirectSum.GCommRing 𝒜]
+[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
+(findim : ∃ d : ℕ , dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d):True := sorry
+
+-- Semiring A]
+
+-- variable [SetLike σ A]
\ No newline at end of file
diff --git a/comm_alg/test.lean b/comm_alg/test.lean
new file mode 100644
index 0000000..64650dc
--- /dev/null
+++ b/comm_alg/test.lean
@@ -0,0 +1,137 @@
+import Mathlib.Order.KrullDimension
+import Mathlib.Order.JordanHolder
+import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
+import Mathlib.Order.Height
+import Mathlib.RingTheory.Ideal.Basic
+import Mathlib.RingTheory.Ideal.Operations
+import Mathlib.LinearAlgebra.Finsupp
+import Mathlib.RingTheory.GradedAlgebra.Basic
+import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
+import Mathlib.Algebra.Module.GradedModule
+import Mathlib.RingTheory.Ideal.AssociatedPrime
+import Mathlib.RingTheory.Noetherian
+import Mathlib.RingTheory.Artinian
+import Mathlib.Algebra.Module.GradedModule
+import Mathlib.RingTheory.Noetherian
+import Mathlib.RingTheory.Finiteness
+import Mathlib.RingTheory.Ideal.Operations
+import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
+import Mathlib.RingTheory.FiniteType
+import Mathlib.Order.Height
+import Mathlib.RingTheory.PrincipalIdealDomain
+import Mathlib.RingTheory.DedekindDomain.Basic
+import Mathlib.RingTheory.Ideal.Quotient
+import Mathlib.RingTheory.Localization.AtPrime
+import Mathlib.Order.ConditionallyCompleteLattice.Basic
+import Mathlib.Algebra.DirectSum.Ring
+import Mathlib.RingTheory.Ideal.LocalRing
+
+-- Setting for "library_search"
+set_option maxHeartbeats 0
+macro "ls" : tactic => `(tactic|library_search)
+
+-- New tactic "obviously"
+macro "obviously" : tactic =>
+  `(tactic| (
+      first
+        | dsimp; simp; done; dbg_trace "it was dsimp simp"
+        | simp; done; dbg_trace "it was simp"
+        | tauto; done; dbg_trace "it was tauto"
+        | simp; tauto; done; dbg_trace "it was simp tauto"
+        | rfl; done; dbg_trace "it was rfl"
+        | norm_num; done; dbg_trace "it was norm_num"
+        | /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
+        -- | gcongr; done
+        | ring; done; dbg_trace "it was ring"
+        | trivial; done; dbg_trace "it was trivial"
+        -- | nlinarith; done
+        | fail "No, this is not obvious."))
+
+-- @[BH, 1.5.6 (b)(ii)]
+lemma ss (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
+  [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) : true := by
+  sorry
+-- Ideal.IsHomogeneous 𝒜 p
+
+
+
+
+noncomputable def length ( A : Type _) (M : Type _)
+ [CommRing A] [AddCommGroup M] [Module A M] :=  Set.chainHeight {M' : Submodule A M | M' < ⊤}
+
+
+def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I)
+def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I)
+
+--theorem monotone_stabilizes_iff_noetherian :
+-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
+-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
+
+open GradedMonoid.GSmul
+open DirectSum
+
+instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]  [DirectSum.GCommRing 𝒜]
+  [DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
+    where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
+
+lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]  [DirectSum.GCommRing 𝒜]
+  [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
+  of _ _ (a • m) = of _ _ a • of _ _ m := by
+  refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
+  refine' of_eq_of_gradedMonoid_eq _
+  exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
+
+instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]  [DirectSum.GCommRing 𝒜]
+  [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
+  letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
+  exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
+
+instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]  [DirectSum.GCommRing 𝒜]
+  [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
+  letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
+  exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
+
+noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
+  [DirectSum.GCommRing 𝒜]
+  [DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
+
+noncomputable def dimensionring { A: Type _}
+ [CommRing A] := krullDim (PrimeSpectrum A)
+
+
+noncomputable def dimensionmodule ( A : Type _) (M : Type _)
+ [CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
+
+--  lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
+--   [DirectSum.GCommRing 𝒜]
+--   [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
+
+
+
+
+@[simp]
+def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
+
+-- @[BH, 4.1.3]
+theorem hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
+[DirectSum.GCommRing 𝒜]
+[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) 
+(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
+(findim :  dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) (hilb : ℤ → ℤ)
+ (Hhilb: hilbert_function 𝒜 𝓜 hilb)
+: PolyType hilb (d - 1) := by
+  sorry
+
+-- @
+lemma Graded_quotient (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)][DirectSum.GCommRing 𝒜] 
+  : true := by
+  sorry
+
+
+-- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M
+lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
+  [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
+  : true := by
+  sorry
+#print Exist_chain_of_graded_submodules
+#print Finset
\ No newline at end of file