diff --git a/src/lib.rs b/src/lib.rs
index d3a52bd..8c43d3c 100644
--- a/src/lib.rs
+++ b/src/lib.rs
@@ -54,17 +54,17 @@ impl<T: Mul + Add + Sub> Matrix<T> {
         }
     }
 
-    /// Return the height of a matrix.
+    /// Returns the height of a matrix.
     pub fn height(&self) -> usize {
         self.entries.len()
     }
 
-    /// Return the width of a matrix.
+    /// Returns the width of a matrix.
     pub fn width(&self) -> usize {
         self.entries[0].len()
     }
 
-    /// Return the transpose of a matrix.
+    /// Returns the transpose of a matrix.
     pub fn transpose(&self) -> Self
     where
         T: Copy,
@@ -80,7 +80,7 @@ impl<T: Mul + Add + Sub> Matrix<T> {
         Matrix { entries: out }
     }
 
-    /// Return a reference to the rows of a matrix as `&Vec<Vec<T>>`.
+    /// Returns a reference to the rows of a matrix as `&Vec<Vec<T>>`.
     pub fn rows(&self) -> &Vec<Vec<T>> {
         &self.entries
     }
@@ -98,7 +98,7 @@ impl<T: Mul + Add + Sub> Matrix<T> {
         self.height() == self.width()
     }
 
-    /// Return a matrix after removing the provided row and column from it.
+    /// Returns a matrix after removing the provided row and column from it.
     /// Note: Row and column numbers are 0-indexed.
     /// # Example
     /// ```
@@ -127,7 +127,7 @@ impl<T: Mul + Add + Sub> Matrix<T> {
         Matrix { entries: out }
     }
 
-    /// Return the determinant of a square matrix. This method additionally requires [`Zero`],
+    /// Returns the determinant of a square matrix. This method additionally requires [`Zero`],
     /// [`One`] and [`Copy`] traits. Also, we need that the [`Mul`] and [`Add`] operations
     /// return the same type `T`. This uses basic recursive algorithm using cofactor-minor.
     /// See [`det_in_field`](Self::det_in_field()) for faster determinant calculation in fields.
@@ -169,7 +169,7 @@ impl<T: Mul + Add + Sub> Matrix<T> {
         }
     }
 
-    /// Return the determinant of a square matrix over a field i.e. needs [`One`] and [`Div`] traits.
+    /// Returns the determinant of a square matrix over a field i.e. needs [`One`] and [`Div`] traits.
     /// See [`det`](Self::det()) for determinants in rings.
     /// This method uses row reduction as is much faster.
     /// It'll throw an error if the provided matrix isn't square.
diff --git a/src/tests.rs b/src/tests.rs
index 608c3ec..14eb605 100644
--- a/src/tests.rs
+++ b/src/tests.rs
@@ -5,6 +5,7 @@ fn mul_test() {
     let a = Matrix::from(vec![vec![1, 2, 4], vec![3, 4, 9]]).unwrap();
     let b = Matrix::from(vec![vec![1, 2], vec![2, 3], vec![5, 1]]).unwrap();
     let c = Matrix::from(vec![vec![25, 12], vec![56, 27]]).unwrap();
+
     assert_eq!(a * b, c);
 }
 
@@ -15,6 +16,7 @@ fn add_sub_test() {
     let c = Matrix::from(vec![vec![1, 2, 4], vec![2, 2, 5]]).unwrap();
     let d = Matrix::from(vec![vec![1, 2, 2], vec![-2, 0, -1]]).unwrap();
     let e = Matrix::from(vec![vec![-1, -2, -4], vec![-2, -2, -5]]).unwrap();
+
     assert_eq!(a.clone() + b.clone(), c);
     assert_eq!(a - b, d);
     assert_eq!(-c, e);
@@ -30,6 +32,7 @@ fn det_test() {
         vec![1.0, 2.0, 0.0],
     ])
     .unwrap();
+
     assert_eq!(a.det(), Ok(30));
     assert_eq!(c.det_in_field(), Ok(-30.0));
     assert!(b.det().is_err());
@@ -39,6 +42,7 @@ fn det_test() {
 fn zero_one_test() {
     let a = Matrix::from(vec![vec![0, 0, 0], vec![0, 0, 0]]).unwrap();
     let b = Matrix::from(vec![vec![1, 0], vec![0, 1]]).unwrap();
+
     assert_eq!(Matrix::<i32>::zero(2, 3), a);
     assert_eq!(Matrix::<i32>::identity(2), b);
 }
@@ -49,6 +53,7 @@ fn echelon_test() {
     let a = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, -2.0, -2.0]]).unwrap();
     let b = Matrix::from(vec![vec![1.0, 0.0, 0.0], vec![1.0, -2.0, 0.0]]).unwrap();
     let c = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, 1.0, 1.0]]).unwrap();
+
     assert_eq!(m.row_echelon(), a);
     assert_eq!(m.column_echelon(), b);
     assert_eq!(m.reduced_row_echelon(), c);