Compare commits

...

26 commits
0.1.0 ... main

Author SHA1 Message Date
4cdc29aaa1
docs: Updated README.md 2023-05-28 17:31:01 -05:00
59119e2c30
docs: Added a hyperlink 2023-05-28 17:25:44 -05:00
d3c8ffd11e
build: Bumped version to 0.5.0 2023-05-28 02:59:15 -05:00
4ce9554e1f
new: Added error enum to streamline throwing errors 2023-05-28 02:36:29 -05:00
55ac044c39
change: Change syntax between MatrixFrom and MatrixInto so that it'll be easier to integrate into std::From later 2023-05-27 18:59:09 -05:00
6d93559a07
build: Bumped version ro 0.4.0 2023-05-27 18:35:48 -05:00
5453bced71
new: Added inverse method 2023-05-27 18:35:06 -05:00
e9b21e330c
new: Added the MatrixFrom trait 2023-05-27 16:05:26 -05:00
5ac1e60597
docs: Add more links in docs 2023-05-27 03:45:22 -05:00
f49060fe44
docs: Fix method name in docs 2023-05-27 03:45:17 -05:00
00388f1525
build: Bumped version to 0.3.0 2023-05-27 02:40:13 -05:00
60b483dcf3
new: Introduce ToMatrix trait, mostly to reduce writing types every time 2023-05-27 02:22:10 -05:00
79461f7ad7
new: Added mul_scalar method 2023-05-27 01:41:41 -05:00
56222e04f1
new: Added diagonal_matrix method 2023-05-27 01:28:01 -05:00
4a26f0cf71
new: Added trace method 2023-05-27 01:09:52 -05:00
5b9aeb0c34
change: Need more traits by default 2023-05-27 01:02:06 -05:00
b469f7458b
new: Added conversion trait 2023-05-27 00:44:36 -05:00
2c3c2ca80d
fix: Some grammar and newlines 2023-05-26 17:33:51 -05:00
450b00469c
new: Added implementation for Neg 2023-05-26 01:19:40 -05:00
a0a7ae9076
build: Bumped version to 0.2.0 2023-05-26 01:19:35 -05:00
d638e25388
new: Added reduced_row_echelon method 2023-05-26 01:19:30 -05:00
2c5d7c4d77
new: Added row_echelon method 2023-05-26 00:06:41 -05:00
3f8373164b
new: Added det_for_field method 2023-05-25 22:59:01 -05:00
19e410322e
change: Updated README 2023-05-25 21:13:46 -05:00
d812c24284
build: Bumped version to 0.1.1 2023-05-25 21:07:13 -05:00
b4d8791a96
fix: Change name of crate in docs 2023-05-25 21:06:16 -05:00
5 changed files with 542 additions and 90 deletions

View file

@ -1,6 +1,6 @@
[package]
name = "matrix-basic"
version = "0.1.0"
version = "0.5.0"
edition = "2021"
authors = ["Sayantan Santra <sayantan[dot]santra689[at]gmail[dot]com"]
license = "GPL-3.0"

View file

@ -1,9 +1,13 @@
[![crate.io badge](https://img.shields.io/crates/d/matrix-basic)](https://crates.io/crates/matrix-basic)
# `matrix-basic`
### A Rust crate for very basic matrix operations
### A Rust crate for very basic matrix operations.
This is a crate for very basic matrix operations with any type that supports addition, substraction,
and multiplication. Additional properties might be needed for certain operations.
This is a crate for very basic matrix operations with any type that supports addition, substraction, multiplication,
negation, has a zero defined, and implements the Copy trait. Additional properties (e.g. division, existence of one etc.)
might be needed for certain operations.
I created it mostly to learn using generic types and traits.
I created it mostly to learn how to use generic types and traits.
## Usage
Documentation is available here: [docs.rs](https://docs.rs/matrix-basic).

29
src/errors.rs Normal file
View file

@ -0,0 +1,29 @@
use std::{
error::Error,
fmt::{self, Display, Formatter},
};
/// Error type for using in this crate. Mostly to reduce writing
/// error description every time.
#[derive(Debug, PartialEq)]
pub enum MatrixError {
/// Provided matrix isn't square.
NotSquare,
/// provided matrix is singular.
Singular,
/// Provided array has unequal rows.
UnequalRows,
}
impl Display for MatrixError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let out = match *self {
Self::NotSquare => "provided matrix isn't square",
Self::Singular => "provided matrix is singular",
Self::UnequalRows => "provided array has unequal rows",
};
write!(f, "{out}")
}
}
impl Error for MatrixError {}

View file

@ -1,44 +1,70 @@
//! This is a crate for very basic matrix operations
//! with any type that supports addition, substraction,
//! and multiplication. Additional properties might be
//! with any type that implement [`Add`], [`Sub`], [`Mul`],
//! [`Zero`], [`Neg`] and [`Copy`]. Additional properties might be
//! needed for certain operations.
//!
//! I created it mostly to learn using generic types
//! and traits.
//!
//! Sayantan Santra (2023)
use errors::MatrixError;
use num::{
traits::{One, Zero},
Integer,
};
use std::{
fmt::{self, Debug, Display, Formatter},
ops::{Add, Mul, Sub},
ops::{Add, Div, Mul, Neg, Sub},
result::Result,
};
pub mod errors;
mod tests;
/// A generic matrix struct (over any type with addition, substraction
/// and multiplication defined on it).
/// Trait a type must satisfy to be element of a matrix. This is
/// mostly to reduce writing trait bounds afterwards.
pub trait ToMatrix:
Mul<Output = Self>
+ Add<Output = Self>
+ Sub<Output = Self>
+ Zero<Output = Self>
+ Neg<Output = Self>
+ Copy
{
}
/// Blanket implementation for [`ToMatrix`] for any type that satisfies its bounds.
impl<T> ToMatrix for T where
T: Mul<Output = T>
+ Add<Output = T>
+ Sub<Output = T>
+ Zero<Output = T>
+ Neg<Output = T>
+ Copy
{
}
/// A generic matrix struct (over any type with [`Add`], [`Sub`], [`Mul`],
/// [`Zero`], [`Neg`] and [`Copy`] implemented).
/// Look at [`from`](Self::from()) to see examples.
#[derive(PartialEq, Debug, Clone)]
pub struct Matrix<T: Mul + Add + Sub> {
pub struct Matrix<T: ToMatrix> {
entries: Vec<Vec<T>>,
}
impl<T: Mul + Add + Sub> Matrix<T> {
/// Creates a matrix from given 2D "array" in a `Vec<Vec<T>>` form.
impl<T: ToMatrix> Matrix<T> {
/// Creates a matrix from given 2D "array" in a [`Vec<Vec<T>>`] form.
/// It'll throw an error if all the given rows aren't of the same size.
/// # Example
/// ```
/// use matrix::Matrix;
/// let m = Matrix::from(vec![vec![1,2,3], vec![4,5,6]]);
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1, 2, 3], vec![4, 5, 6]]);
/// ```
/// will create the following matrix:
/// ⌈1,2,3⌉
/// ⌊4,5,6⌋
pub fn from(entries: Vec<Vec<T>>) -> Result<Matrix<T>, &'static str> {
/// ⌈1, 2, 3⌉
/// ⌊4, 5, 6⌋
pub fn from(entries: Vec<Vec<T>>) -> Result<Matrix<T>, MatrixError> {
let mut equal_rows = true;
let row_len = entries[0].len();
for row in &entries {
@ -50,25 +76,22 @@ impl<T: Mul + Add + Sub> Matrix<T> {
if equal_rows {
Ok(Matrix { entries })
} else {
Err("Unequal rows.")
Err(MatrixError::UnequalRows)
}
}
/// Return the height of a matrix.
/// Returns the height of a matrix.
pub fn height(&self) -> usize {
self.entries.len()
}
/// Return the width of a matrix.
/// Returns the width of a matrix.
pub fn width(&self) -> usize {
self.entries[0].len()
}
/// Return the transpose of a matrix.
pub fn transpose(&self) -> Self
where
T: Copy,
{
/// Returns the transpose of a matrix.
pub fn transpose(&self) -> Self {
let mut out = Vec::new();
for i in 0..self.width() {
let mut column = Vec::new();
@ -80,16 +103,13 @@ impl<T: Mul + Add + Sub> Matrix<T> {
Matrix { entries: out }
}
/// Return a reference to the rows of a matrix as `&Vec<Vec<T>>`.
/// Returns a reference to the rows of a matrix as `&Vec<Vec<T>>`.
pub fn rows(&self) -> &Vec<Vec<T>> {
&self.entries
}
/// Return the columns of a matrix as `Vec<Vec<T>>`.
pub fn columns(&self) -> Vec<Vec<T>>
where
T: Copy,
{
pub fn columns(&self) -> Vec<Vec<T>> {
self.transpose().entries
}
@ -98,19 +118,16 @@ impl<T: Mul + Add + Sub> Matrix<T> {
self.height() == self.width()
}
/// Return a matrix after removing the provided row and column from it.
/// Returns a matrix after removing the provided row and column from it.
/// Note: Row and column numbers are 0-indexed.
/// # Example
/// ```
/// use matrix::Matrix;
/// let m = Matrix::from(vec![vec![1,2,3],vec![4,5,6]]).unwrap();
/// let n = Matrix::from(vec![vec![5,6]]).unwrap();
/// assert_eq!(m.submatrix(0,0),n);
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1, 2, 3], vec![4, 5, 6]]).unwrap();
/// let n = Matrix::from(vec![vec![5, 6]]).unwrap();
/// assert_eq!(m.submatrix(0, 0), n);
/// ```
pub fn submatrix(&self, row: usize, col: usize) -> Self
where
T: Copy,
{
pub fn submatrix(&self, row: usize, col: usize) -> Self {
let mut out = Vec::new();
for (m, row_iter) in self.entries.iter().enumerate() {
if m == row {
@ -127,26 +144,20 @@ impl<T: Mul + Add + Sub> Matrix<T> {
Matrix { entries: out }
}
/// Return the determinant of a square matrix. This method additionally requires [`Zero`],
/// [`One`] and [`Copy`] traits. Also, we need that the [`Mul`] and [`Add`] operations
/// return the same type `T`.
/// Returns the determinant of a square matrix.
/// This uses basic recursive algorithm using cofactor-minor.
/// See [`det_in_field`](Self::det_in_field()) for faster determinant calculation in fields.
/// It'll throw an error if the provided matrix isn't square.
/// # Example
/// ```
/// use matrix::Matrix;
/// let m = Matrix::from(vec![vec![1,2],vec![3,4]]).unwrap();
/// assert_eq!(m.det(),Ok(-2));
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1, 2], vec![3, 4]]).unwrap();
/// assert_eq!(m.det(), Ok(-2));
/// ```
pub fn det(&self) -> Result<T, &'static str>
where
T: Copy,
T: Mul<Output = T>,
T: Sub<Output = T>,
T: Zero,
{
pub fn det(&self) -> Result<T, MatrixError> {
if self.is_square() {
// It's a recursive algorithm using minors.
// TODO: Implement a faster algorithm. Maybe use row reduction for fields.
// TODO: Implement a faster algorithm.
let out = if self.width() == 1 {
self.entries[0][0]
} else {
@ -164,15 +175,152 @@ impl<T: Mul + Add + Sub> Matrix<T> {
};
Ok(out)
} else {
Err("Provided matrix isn't square.")
Err(MatrixError::NotSquare)
}
}
/// Creates a zero matrix of a given size.
pub fn zero(height: usize, width: usize) -> Self
/// Returns the determinant of a square matrix over a field i.e. needs [`One`] and [`Div`] traits.
/// See [`det`](Self::det()) for determinants in rings.
/// This method uses row reduction as is much faster.
/// It'll throw an error if the provided matrix isn't square.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0], vec![3.0, 4.0]]).unwrap();
/// assert_eq!(m.det_in_field(), Ok(-2.0));
/// ```
pub fn det_in_field(&self) -> Result<T, MatrixError>
where
T: Zero,
T: One,
T: PartialEq,
T: Div<Output = T>,
{
if self.is_square() {
// Cloning is necessary as we'll be doing row operations on it.
let mut rows = self.entries.clone();
let mut multiplier = T::one();
let h = self.height();
let w = self.width();
for i in 0..(h - 1) {
// First check if the row has diagonal element 0, if yes, then swap.
if rows[i][i] == T::zero() {
let mut zero_column = true;
for j in (i + 1)..h {
if rows[j][i] != T::zero() {
rows.swap(i, j);
multiplier = -multiplier;
zero_column = false;
break;
}
}
if zero_column {
return Ok(T::zero());
}
}
for j in (i + 1)..h {
let ratio = rows[j][i] / rows[i][i];
for k in i..w {
rows[j][k] = rows[j][k] - rows[i][k] * ratio;
}
}
}
for (i, row) in rows.iter().enumerate() {
multiplier = multiplier * row[i];
}
Ok(multiplier)
} else {
Err(MatrixError::NotSquare)
}
}
/// Returns the row echelon form of a matrix over a field i.e. needs the [`Div`] trait.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![3.0, 4.0, 5.0]]).unwrap();
/// let n = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, -2.0, -4.0]]).unwrap();
/// assert_eq!(m.row_echelon(), n);
/// ```
pub fn row_echelon(&self) -> Self
where
T: PartialEq,
T: Div<Output = T>,
{
// Cloning is necessary as we'll be doing row operations on it.
let mut rows = self.entries.clone();
let mut offset = 0;
let h = self.height();
let w = self.width();
for i in 0..(h - 1) {
// Check if all the rows below are 0
if i + offset >= self.width() {
break;
}
// First check if the row has diagonal element 0, if yes, then swap.
if rows[i][i + offset] == T::zero() {
let mut zero_column = true;
for j in (i + 1)..h {
if rows[j][i + offset] != T::zero() {
rows.swap(i, j);
zero_column = false;
break;
}
}
if zero_column {
offset += 1;
}
}
for j in (i + 1)..h {
let ratio = rows[j][i + offset] / rows[i][i + offset];
for k in (i + offset)..w {
rows[j][k] = rows[j][k] - rows[i][k] * ratio;
}
}
}
Matrix { entries: rows }
}
/// Returns the column echelon form of a matrix over a field i.e. needs the [`Div`] trait.
/// It's just the transpose of the row echelon form of the transpose.
/// See [`row_echelon`](Self::row_echelon()) and [`transpose`](Self::transpose()).
pub fn column_echelon(&self) -> Self
where
T: PartialEq,
T: Div<Output = T>,
{
self.transpose().row_echelon().transpose()
}
/// Returns the reduced row echelon form of a matrix over a field i.e. needs the `Div`] trait.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![3.0, 4.0, 5.0]]).unwrap();
/// let n = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, 1.0, 2.0]]).unwrap();
/// assert_eq!(m.reduced_row_echelon(), n);
/// ```
pub fn reduced_row_echelon(&self) -> Self
where
T: PartialEq,
T: Div<Output = T>,
{
let mut echelon = self.row_echelon();
let mut offset = 0;
for row in &mut echelon.entries {
while row[offset] == T::zero() {
offset += 1;
}
let divisor = row[offset];
for entry in row.iter_mut().skip(offset) {
*entry = *entry / divisor;
}
offset += 1;
}
echelon
}
/// Creates a zero matrix of a given size.
pub fn zero(height: usize, width: usize) -> Self {
let mut out = Vec::new();
for _ in 0..height {
let mut new_row = Vec::new();
@ -185,40 +333,172 @@ impl<T: Mul + Add + Sub> Matrix<T> {
}
/// Creates an identity matrix of a given size.
/// It needs the [`One`] trait.
pub fn identity(size: usize) -> Self
where
T: Zero,
T: One,
{
let mut out = Vec::new();
for i in 0..size {
let mut new_row = Vec::new();
for j in 0..size {
if i == j {
new_row.push(T::one());
} else {
new_row.push(T::zero());
let mut out = Matrix::zero(size, size);
for (i, row) in out.entries.iter_mut().enumerate() {
row[i] = T::one();
}
out
}
/// Returns the trace of a square matrix.
/// It'll throw an error if the provided matrix isn't square.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1, 2], vec![3, 4]]).unwrap();
/// assert_eq!(m.trace(), Ok(5));
/// ```
pub fn trace(self) -> Result<T, MatrixError> {
if self.is_square() {
let mut out = self.entries[0][0];
for i in 1..self.height() {
out = out + self.entries[i][i];
}
Ok(out)
} else {
Err(MatrixError::NotSquare)
}
}
/// Returns a diagonal matrix with a given diagonal.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::diagonal_matrix(vec![1, 2, 3]);
/// let n = Matrix::from(vec![vec![1, 0, 0], vec![0, 2, 0], vec![0, 0, 3]]).unwrap();
///
/// assert_eq!(m, n);
/// ```
pub fn diagonal_matrix(diag: Vec<T>) -> Self {
let size = diag.len();
let mut out = Matrix::zero(size, size);
for (i, row) in out.entries.iter_mut().enumerate() {
row[i] = diag[i];
}
out
}
/// Multiplies all entries of a matrix by a scalar.
/// Note that it modifies the supplied matrix.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let mut m = Matrix::from(vec![vec![1, 2, 0], vec![0, 2, 5], vec![0, 0, 3]]).unwrap();
/// let n = Matrix::from(vec![vec![2, 4, 0], vec![0, 4, 10], vec![0, 0, 6]]).unwrap();
/// m.mul_scalar(2);
///
/// assert_eq!(m, n);
/// ```
pub fn mul_scalar(&mut self, scalar: T) {
for row in &mut self.entries {
for entry in row {
*entry = *entry * scalar;
}
}
}
/// Returns the inverse of a square matrix. Throws an error if the matrix isn't square.
/// /// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0], vec![3.0, 4.0]]).unwrap();
/// let n = Matrix::from(vec![vec![-2.0, 1.0], vec![1.5, -0.5]]).unwrap();
/// assert_eq!(m.inverse(), Ok(n));
/// ```
pub fn inverse(&self) -> Result<Self, MatrixError>
where
T: Div<Output = T>,
T: One,
T: PartialEq,
{
if self.is_square() {
// We'll use the basic technique of using an augmented matrix (in essence)
// Cloning is necessary as we'll be doing row operations on it.
let mut rows = self.entries.clone();
let h = self.height();
let w = self.width();
let mut out = Self::identity(h).entries;
// First we get row echelon form
for i in 0..(h - 1) {
// First check if the row has diagonal element 0, if yes, then swap.
if rows[i][i] == T::zero() {
let mut zero_column = true;
for j in (i + 1)..h {
if rows[j][i] != T::zero() {
rows.swap(i, j);
out.swap(i, j);
zero_column = false;
break;
}
}
if zero_column {
return Err(MatrixError::Singular);
}
}
for j in (i + 1)..h {
let ratio = rows[j][i] / rows[i][i];
for k in i..w {
rows[j][k] = rows[j][k] - rows[i][k] * ratio;
}
// We cannot skip entries here as they might not be 0
for k in 0..w {
out[j][k] = out[j][k] - out[i][k] * ratio;
}
}
}
out.push(new_row);
// Then we reduce the rows
for i in 0..h {
if rows[i][i] == T::zero() {
return Err(MatrixError::Singular);
}
let divisor = rows[i][i];
for entry in rows[i].iter_mut().skip(i) {
*entry = *entry / divisor;
}
for entry in out[i].iter_mut() {
*entry = *entry / divisor;
}
}
// Finally, we do upside down row reduction
for i in (1..h).rev() {
for j in (0..i).rev() {
let ratio = rows[j][i];
for k in 0..w {
out[j][k] = out[j][k] - out[i][k] * ratio;
}
}
}
Ok(Matrix { entries: out })
} else {
Err(MatrixError::NotSquare)
}
Matrix { entries: out }
}
// TODO: Canonical forms, eigenvalues, eigenvectors etc.
}
impl<T: Debug + Mul + Add + Sub> Display for Matrix<T> {
impl<T: Debug + ToMatrix> Display for Matrix<T> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{:?}", self.entries)
}
}
impl<T: Mul<Output = T> + Add + Sub + Copy + Zero> Mul for Matrix<T> {
// TODO: Implement a faster algorithm. Maybe use row reduction for fields.
impl<T: Mul<Output = T> + ToMatrix> Mul for Matrix<T> {
// TODO: Implement a faster algorithm.
type Output = Self;
fn mul(self, other: Self) -> Self {
fn mul(self, other: Self) -> Self::Output {
let width = self.width();
if width != other.height() {
panic!("Row length of first matrix must be same as column length of second matrix.");
panic!("row length of first matrix != column length of second matrix");
} else {
let mut out = Vec::new();
for row in self.rows() {
@ -237,9 +517,9 @@ impl<T: Mul<Output = T> + Add + Sub + Copy + Zero> Mul for Matrix<T> {
}
}
impl<T: Add<Output = T> + Sub + Mul + Copy + Zero> Add for Matrix<T> {
impl<T: Mul<Output = T> + ToMatrix> Add for Matrix<T> {
type Output = Self;
fn add(self, other: Self) -> Self {
fn add(self, other: Self) -> Self::Output {
if self.height() == other.height() && self.width() == other.width() {
let mut out = self.entries.clone();
for (i, row) in self.rows().iter().enumerate() {
@ -249,24 +529,97 @@ impl<T: Add<Output = T> + Sub + Mul + Copy + Zero> Add for Matrix<T> {
}
Matrix { entries: out }
} else {
panic!("Both matrices must be of same dimensions.");
panic!("provided matrices have different dimensions");
}
}
}
impl<T: Add + Sub<Output = T> + Mul + Copy + Zero> Sub for Matrix<T> {
impl<T: ToMatrix> Neg for Matrix<T> {
type Output = Self;
fn sub(self, other: Self) -> Self {
if self.height() == other.height() && self.width() == other.width() {
let mut out = self.entries.clone();
for (i, row) in self.rows().iter().enumerate() {
for (j, entry) in other.rows()[i].iter().enumerate() {
out[i][j] = row[j] - *entry;
}
fn neg(self) -> Self::Output {
let mut out = self;
for row in &mut out.entries {
for entry in row {
*entry = -*entry;
}
Matrix { entries: out }
}
out
}
}
impl<T: ToMatrix> Sub for Matrix<T> {
type Output = Self;
fn sub(self, other: Self) -> Self::Output {
if self.height() == other.height() && self.width() == other.width() {
self + -other
} else {
panic!("Both matrices must be of same dimensions.");
panic!("provided matrices have different dimensions");
}
}
}
/// Trait for conversion between matrices of different types.
/// It only has a [`matrix_from()`](Self::matrix_from()) method.
/// This is needed since negative trait bound are not supported in stable Rust
/// yet, so we'll have a conflict trying to implement [`From`].
/// I plan to change this to the default From trait as soon as some sort
/// of specialization system is implemented.
/// You can track this issue [here](https://github.com/rust-lang/rust/issues/42721).
pub trait MatrixFrom<T: ToMatrix> {
/// Method for getting a matrix of a new type from a matrix of type [`Matrix<T>`].
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// use matrix_basic::MatrixFrom;
///
/// let a = Matrix::from(vec![vec![1, 2, 3], vec![0, 1, 2]]).unwrap();
/// let b = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, 1.0, 2.0]]).unwrap();
/// let c = Matrix::<f64>::matrix_from(a); // Type annotation is needed here
///
/// assert_eq!(c, b);
/// ```
fn matrix_from(input: Matrix<T>) -> Self;
}
/// Blanket implementation of [`MatrixFrom<T>`] for converting [`Matrix<S>`] to [`Matrix<T>`] whenever
/// `S` implements [`From(T)`]. Look at [`matrix_into`](Self::matrix_into()).
impl<T: ToMatrix, S: ToMatrix + From<T>> MatrixFrom<T> for Matrix<S> {
fn matrix_from(input: Matrix<T>) -> Self {
let mut out = Vec::new();
for row in input.entries {
let mut new_row: Vec<S> = Vec::new();
for entry in row {
new_row.push(entry.into());
}
out.push(new_row)
}
Matrix { entries: out }
}
}
/// Sister trait of [`MatrixFrom`]. Basically does the same thing, just with a
/// different syntax.
pub trait MatrixInto<T> {
/// Method for converting a matrix [`Matrix<T>`] to another type.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// use matrix_basic::MatrixInto;
///
/// let a = Matrix::from(vec![vec![1, 2, 3], vec![0, 1, 2]]).unwrap();
/// let b = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, 1.0, 2.0]]).unwrap();
/// let c: Matrix<f64> = a.matrix_into(); // Type annotation is needed here
///
///
/// assert_eq!(c, b);
/// ```
fn matrix_into(self) -> T;
}
/// Blanket implementation of [`MatrixInto<T>`] for [`Matrix<S>`] whenever `T`
/// (which is actually some)[`Matrix<U>`] implements [`MatrixFrom<S>`].
impl<T: MatrixFrom<S>, S: ToMatrix> MatrixInto<T> for Matrix<S> {
fn matrix_into(self) -> T {
T::matrix_from(self)
}
}

View file

@ -1,11 +1,17 @@
#[cfg(test)]
use crate::Matrix;
#[test]
fn mul_test() {
let a = Matrix::from(vec![vec![1, 2, 4], vec![3, 4, 9]]).unwrap();
let b = Matrix::from(vec![vec![1, 2], vec![2, 3], vec![5, 1]]).unwrap();
let c = Matrix::from(vec![vec![25, 12], vec![56, 27]]).unwrap();
let mut c = Matrix::from(vec![vec![25, 12], vec![56, 27]]).unwrap();
let d = Matrix::from(vec![vec![75, 36], vec![168, 81]]).unwrap();
assert_eq!(a * b, c);
c.mul_scalar(3);
assert_eq!(c, d);
}
#[test]
@ -14,22 +20,82 @@ fn add_sub_test() {
let b = Matrix::from(vec![vec![0, 0, 1], vec![2, 1, 3]]).unwrap();
let c = Matrix::from(vec![vec![1, 2, 4], vec![2, 2, 5]]).unwrap();
let d = Matrix::from(vec![vec![1, 2, 2], vec![-2, 0, -1]]).unwrap();
let e = Matrix::from(vec![vec![-1, -2, -4], vec![-2, -2, -5]]).unwrap();
assert_eq!(a.clone() + b.clone(), c);
assert_eq!(a - b, d);
assert_eq!(-c, e);
}
#[test]
fn det_test() {
fn det_trace_test() {
let a = Matrix::from(vec![vec![1, 2, 0], vec![0, 3, 5], vec![0, 0, 10]]).unwrap();
let b = Matrix::from(vec![vec![1, 2, 0], vec![0, 3, 5]]).unwrap();
let c = Matrix::from(vec![
vec![0.0, 0.0, 10.0],
vec![0.0, 3.0, 5.0],
vec![1.0, 2.0, 0.0],
])
.unwrap();
assert_eq!(a.det(), Ok(30));
assert_eq!(c.det_in_field(), Ok(-30.0));
assert!(b.det().is_err());
assert_eq!(a.trace(), Ok(14));
}
#[test]
fn zero_one_test() {
fn zero_one_diag_test() {
let a = Matrix::from(vec![vec![0, 0, 0], vec![0, 0, 0]]).unwrap();
let b = Matrix::from(vec![vec![1, 0], vec![0, 1]]).unwrap();
assert_eq!(Matrix::<i32>::zero(2, 3), a);
assert_eq!(Matrix::<i32>::identity(2), b);
assert_eq!(Matrix::diagonal_matrix(vec![1, 1]), b);
}
#[test]
fn echelon_test() {
let m = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![1.0, 0.0, 1.0]]).unwrap();
let a = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, -2.0, -2.0]]).unwrap();
let b = Matrix::from(vec![vec![1.0, 0.0, 0.0], vec![1.0, -2.0, 0.0]]).unwrap();
let c = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, 1.0, 1.0]]).unwrap();
assert_eq!(m.row_echelon(), a);
assert_eq!(m.column_echelon(), b);
assert_eq!(m.reduced_row_echelon(), c);
}
#[test]
fn conversion_test() {
let a = Matrix::from(vec![vec![1, 2, 3], vec![0, 1, 2]]).unwrap();
let b = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, 1.0, 2.0]]).unwrap();
use crate::MatrixInto;
assert_eq!(b, a.clone().matrix_into());
use crate::MatrixFrom;
let c = Matrix::<f64>::matrix_from(a);
assert_eq!(c, b);
}
#[test]
fn inverse_test() {
let a = Matrix::from(vec![vec![1.0, 2.0], vec![1.0, 2.0]]).unwrap();
let b = Matrix::from(vec![
vec![1.0, 2.0, 3.0],
vec![0.0, 1.0, 4.0],
vec![5.0, 6.0, 0.0],
])
.unwrap();
let c = Matrix::from(vec![
vec![-24.0, 18.0, 5.0],
vec![20.0, -15.0, -4.0],
vec![-5.0, 4.0, 1.0],
])
.unwrap();
println!("{:?}", a.inverse());
assert!(a.inverse().is_err());
assert_eq!(b.inverse(), Ok(c));
}